Scientists applaud President Biden’s White House science team and commitment to science

Scientists applaud President Biden’s White House science team and commitment to science

By Shivani Majmudar,  Jan 22, 2021 –
President Joe Biden’s White House science team faces cascading crises as it takes command amid COVID-19, escalating climate change and crippling public doubts about science. But scientists across the country are confident the new administration is up to the challenge, especially under the leadership of science adviser Eric Lander, the pioneer who helped map the human genome.

Biden selected Lander, a renowned geneticist and mathematician, to be his science adviser and director of the White House Office of Science and Technology Policy (OSTP) before his inauguration. If confirmed, Lander will be the first life scientist to hold either position, as well as the first to hold Cabinet-level status.

“[Biden’s] appointment sends a powerful message that science will regain its place as the foundation for formulating the future of medical and health policy,” said Dr. Howard Koh, a physician and professor at Harvard University’s T.H. Chan School of Public Health, in an email.

Veteran geoscientist Richard Alley of Pennsylvania State University sees environmental issues and other science policy securing high priority as well. Not only is the recognition of biomedical sciences at the top positions in government long overdue, he said, but Lander’s expertise and knowledge of the scientific process also will inform policy solutions across all sectors.

President Barack Obama, left, confers with President’s Council of Advisors on Science and Technology Co-chairs Eric Lander, center, and Dr. John Holdren on March 27, 2015. (Official White House Photo by Pete Souza)

Lander was the principle investigator in the famous Human Genome Project, which sequenced the entire coding of human DNA in 2003. Under former President Barack Obama’s administration, he was co-chair of the President’s Council of Advisors on Science and Technology (PCAST) and advised the president on many issues that are still prevalent today including climate change, clean energy and vaccine rollout during the H1N1 influenza pandemic of 2009.

Lander will step down from his role as the founding director of the Broad Institute, a research collaborative of Harvard University and the Massachusetts Institute of Technology, to serve in the White House again.

“The science adviser is someone who brings science to the table of policy discussion and understands the difference between science and unsubstantiated opinion,” said science policy leader Andrew Rosenberg, who heads the Center of Science and Democracy at the Union of Concerned Scientists. “It’s what Lander can do and what I believe he will do.”

More broadly, scientists look forward to the dawn of a new era in which the nation’s leadership respects science, renews public trust in science and shapes evidence-based policy in the public’s best interest — a stark contrast from the past four years.

“It’s tough to have an influence if you’re not in the room,” Rosenberg said of scientists during former President Donald Trump’s administration. “There’s a lot of catching up to do.”

Biden has ambitious plans to do just that. To address the raging pandemic, he is committed to administering 100 million COVID-19 vaccines in his first 100 days in office. This comes as recent data from the Centers for Disease Control and Prevention suggests only 46% of all vaccine doses distributed so far have been administered.

Biden’s climate agenda is just as bold. It calls for the U.S. to achieve 100% clean energy and net-zero emissions by 2050.

Other priorities Biden set for the Cabinet-level science post include technological innovation, racial justice and long-term economic sustainability. Biden outlined these in a letter he wrote to Lander after his nomination.

Some scientists have reservations about the new team, particularly about the need to stress climate reform. Joellen Russell, a professor of biogeochemical dynamics and a leading national expert in climate science on faculty at the University of Arizona, said she is incredibly enthusiastic about the prospect of the country’s scientific future. But she added she is surprised the climate team was comprised mostly of lawyers and policy people.

“I think there are some gaps that are unlikely to be seen by people who are not climate scientists,” Russell said.

Russell is a strong proponent of accountability through public verification of federal action taken to mitigate climate change, such as policies to lower carbon emissions. Climate scientists are the best positioned to develop effective and accurate testing mechanisms, she said.

Russell agreed with Rosenberg and Alley, though, that the responsibility falls on the science community to support the administration and hold it to its commitments.

The rest of Biden’s science team is a diverse, deeply respected group of qualified scientists, including two prominent female co-chairs, bioengineer Frances Arnold and sociologist Alondra Nelson. If confirmed, Nelson will serve as OSTP deputy director for science and society, another White House first.

So far, Biden has followed through on many of the promises he was elected on. In his first two days as president, Biden signed at least 17 executive orders, including establishing a national mask and social distancing mandate on federal property, and rejoining the Paris climate agreement from which Trump withdrew the U.S. in 2017.

Rosenberg said he also hopes to see an executive order implementing a scientific integrity policy in all federal agencies — this would explicitly outlaw any political manipulation of science before it is presented to advisory boards or the public.

“There are a lot of big tasks ahead,” Rosenberg said. “But I’m sure Dr. Lander and the White House science team will be up to it.”

Shivani Majmudar covers health disparities, science and policy at Medill. You can follow her on Twitter @spmajmudarr.

Climate change continues as a global crisis amid COVID-19—and it’s the greater threat

Climate change continues as a global crisis amid COVID-19—and it’s the greater threat

By Shivani Majmudar, Dec. 18, 2020 –

COVID-19 swept the world, with little regard for anyone who stood in its path. Within weeks, the virus killed thousands, isolated people in their homes and sent economies plummeting.

Not only did COVID-19 overwhelm the United States health care system during the first surge, but our political leaders failed to mobilize alongside health experts to combat the virus together.

Consequently, the pandemic rages on. Today, almost nine months after the first reported coronavirus case in the U.S., more than 220,000 people have died.

“We are the richest country in the world. We have all this knowledge and capability, but it didn’t matter because we did not have trust,” said Joellen Russell, a professor of biogeochemical dynamics at the University of Arizona.

Without serious reform, environmental scientists at the 2020 Comer Climate Conference fear we are risking the same mistakes again with the far greater global threat of climate change.

Climate change impacts have accelerated in recent years, triggering more frequent and severe hurricanes, wildfires and heat waves. Conference attendees shared the concern that the heightened mistrust between scientists and many political leaders adds yet another barrier to effective legislative action and renders our communities increasingly vulnerable to the rapidly changing environment.

“Climate change is the pandemic without a vaccine,” said Raymond Pierrehumbert, a professor of physics at the University of Oxford. While biological innovation, including an expected vaccine, will bring COVID-19 under control, scientific knowledge alone cannot slow climate change. We have to act together and we have to act now, he added.

Failure to take collective action quickly may have been the biggest U.S. mistake in limiting the spread of the pandemic. The Trump Administration did not consider the virus as a serious threat until two months after the first COVID-19 case was reported. President Donald Trump left individual states to create their own stay-at-home protocols, which was why some reopened too early. He continues to undermine the recommended health guidelines of wearing face masks and social distancing. As a result, COVID-19 cases continue to surge at over 300,000 new infections on Dec. 17, with deaths hovering above 3,200 that day.

But this surge was not the case everywhere. For example, New Zealand championed rigorous prevention during the first outbreak and effectively curbed the spread of the virus.

“Science won,” said Russell, describing how New Zealand beat COVID-19. “People worked together. It requires a combination of willingness, leadership and science.”

Russell and other conference scientists urged that this balance be emulated around the world, starting with the U.S., to stem climate change. They presented their latest findings on melting glaciers linked to sea level rise and shifting wind and rain patterns, which can mean severe drought and crop failures. Delaying action can be disastrous, as seen with the pandemic, and the consequences of climate change are predicted to be even worse.

The Finite Volume Cubed-Sphere dynamical core (FV3) model is the newest global weather prediction model, designed to be more comprehensive of Earth’s systems. Previous weather models only accounted for the atmosphere, whereas the FV3 also includes oceans, ecosystems and dynamic vegetation. (Shivani Majmudar/MEDILL)

With global warming tied to fossil fuel emissions, conference scientists pointed to melting snow caps in the Himalayas depleting freshwater resources that over 1.9 billion people across Asia rely on. The warming climate is creating more dangerous outdoor working conditions in heat millions of workers can’t afford to avoid. Humans meddling with the ecosystem also drives the spread of pathogens and creates new vectors for the transmission of viruses from animals to people, such as COVID-19. A recent report from the United Nations Environment Programme and International Livestock Research Institute suggests that continued disruption of wildlife and the environment will make large disease outbreaks like COVID-19 more common. Closer to home, California and large swatches of the country are facing drought while the Midwest floods due to extreme rainfall.

As the world manages its reaction to this global crisis and prepares for the larger one at hand, scientists at the Comer Climate Conference identified two important lessons to be learned from the COVID-19 pandemic to help mitigate the imminent effects of climate change.

First, they called for added urgency to recognize the impact of carbon emissions and offer real-time updates to hold countries accountable for their energy policies that release greenhouse gases. Russell said without this transparency to encourage reform, climate change seems like a “big, endless problem instead of an immediate fight for our grandchildren’s future.”

Second, identify practical solutions. Many people oppose environmental reform out of fear that the economy will collapse even further, heightening the pressures of the pandemic. But veteran geoscientist Richard Alley argues that the shift to clean energy can actually stimulate the economy when viewed as an opportunity for political and technological innovation. Alley, a professor at Pennsylvania State University, was one of the founding mentors of the Comer Family Foundation’s support for climate research and fellowships. He sees energy innovation as a win-win for economic growth, human health, national security and the environment.

“We need to make energy something that is flexible and interactive so that people can use it in the way that is best for them,” Alley said. He suggested turning the electric grid into something like the internet, a platform on which people can buy, sell, and trade shares of resources. This way more people could access the financial and environmental benefits of clean energy without having to worry about investing in the individual resources for their properties.

Alley proposed a hypothetical example of a dairy farmer, struggling to stay afloat due to high costs of operation. Rather than paying for and installing a few solar panels for his roof, the farmer instead could invest in community solar, a power plant whose electricity is shared by multiple properties. The community grid sells solar electric power to homeowners who now no longer need to invest in their own solar panels. It’s cost-effective, and gives the farmer a greater chance at survival because now he has two crops—milk and energy—instead of just one.

In other words, instead of funding policies and lobbies to decide who gets to control our resources, we should be financing ways to make more efficient use of our resources, Alley said.

Solutions like this require a multidisciplinary team of scientists, engineers and economists. At the core of these efforts, however, lies the country’s leadership. Now, more than ever before, we need an administration who will provide a science-backed, coordinated response to climate change while prioritizing the well-being of its citizens.

In an old democracy like that of the United States, we have a mechanism to rectify the perceived lack of responsibility taken by elected officials, reminded Russell. Votes do matter.

Now is the time to trust our institutions and build a society that is committed to our future environment, health and quality of life—that’s the message Russel, Alley and many others conveyed.

Now is the time for individual action to promote collective reform. And it can start as early as November 3.

Shivani Majmudar is a health, environment and science reporter at Medill. You can follow her on Twitter at @spmajmudarr.

Melting glaciers on Mount Everest could threaten freshwater for millions and world economies

Melting glaciers on Mount Everest could threaten freshwater for millions and world economies

By Shivani Majmudar, Dec. 18, 2020 –

Amid this year’s global pandemic, the world is also fighting more frequent and severe hurricanes, larger wildfires and prolonged heat waves—indicative that climate change is real and it’s happening now.

“We’re at the blinking yellow light,” said Laura Mattas, a graduate research student at the University of Maine’s Climate Change Institute.

Mattas studies the Khumbu Glacier, located on the Nepalese side of the Himalayan mountain range. She’s working to identify and document its movement during the Last Glacial Maximum, the last period when ice sheets were at their greatest extent. The retreat of past glaciers provides scientists with the clues they need to predict the social and economic impact of human-driven accelerated climate change.

Her preliminary research, which she presented at this year’s virtual Comer Climate Conference, suggests this was between 18,000 and 23,000 years ago.

As warming temperatures and increased greenhouse-gas emissions melt glaciers, it also depletes the freshwater supply upon human and wildlife communities depend. (Shivani Majmudar/MEDILL)

Glaciers are strong measures of the total energy in a system because they respond to global temperature and precipitation fluctuations. In recent decades, glaciers have retreated significantly, as Earth’s rising average temperature melts ice more quickly than snow accumulates to replace it.

Beyond a marker for change, glaciers also provide a critical human and ecological resource: freshwater. As glaciers melt, not only are oceans desalinated to some degree, impacting the viability of marine life, but freshwater flowing into the oceans is lost in the salty mix. Water that millions of people rely on for household consumption, agriculture, and electricity is slowly draining.

The ripple effect of high glacial activity can even have far-reaching impacts on economic stability. For example, the eventual depletion of a primary source of water will cause a dramatic disruption of the supply chain that serves as the backbone of the economies of China, India, and the other countries that rely on water from the Hindu-Kush-Himalaya mountain range. Consumer prices would likely rise to counterbalance the expense of importing freshwater or desalinating seawater.

Melting mountain glaciers pose the same threats across the world. Closer to home, the mountains of California and Colorado are rapidly losing snow pack. Without action to slow climate change, serious environmental, health and economic consequences remain at stake.

Mattas is one of many environmental researchers studying the past to help inform our climate future at a time when the urgency for climate policy is assaulted by wavering acceptance of science. Veteran climate scientist Richard Alley, a professor at Pennsylvania State University and the master of ceremonies for the annual Comer Climate Conference, argues that climate history is the most reliable predictor of our future environment and the strongest asset to rebuild public trust in science.

“We need to keep people’s minds on the fact that we can solve these problems if we deal with them,” Alley said. “We’ve been successful in the past when we have used science and we have gotten along with each other.”

Mattas is particularly interested in the Khumbu Glacier because of its unique location. It is surrounded by both the cold atmospheric temperatures of the Himalayan mountain range and hot air masses from the warmest waters on Earth, the Indo-Pacific warm pool. This climate positions the mountain glacier well as an incubator of climate change around the world.

Freshwater from the glaciers of the Hindu-Kush-Himalayas feeds into the largest rivers across Asia, including the Ganges and Brahmaputra in India and the Yellow and Yangtze River in China. It directly supplies water to almost 2 million people.

Mattas’ research mapping the patterns and rates of glacial activity requires a combination of field work and data analysis. In April 2019, she and her team trekked the Khumbu Glacier in Dingboche, Nepal to collect samples of moraine—a landscape of rocks, gravel, and dirt that were once embedded in a glacier’s base but are gradually deposited at the glacier’s terminal edge, leaving a trail as it moves.

Glaciers retreat first in thickness before physically melting away. The team found that the modern Khumbu Glacier has approximately 600 meters less snow accumulation than during the Last Glacial Maximum, when the glaciers began to retreat about 18,000 years ago, evidencing how the glacier is shrinking as a result of the warming climate.

Moraines, signature hedges of rock cast off by the melting glaciers, also offer valuable insight into how long ago the rock emerged from the ice and has been exposed the air. The team measures the amount of Beryllium-10 in the sample, an isotope that forms in quartz when high-energy cosmic rays in the Earth’s atmosphere hit its surface. The concentration of 10Be offers a time machine for tracking how long the rock has been ice-free. Scientists call this clock cosmogenic nucleotide dating.

Additionally, they performed detailed photogrammetry, mapping that used the highest-resolution drones to have ever captured Mount Everest. Sampling and analyzing the rocks in the moraines surrounding the modern Khumbu Glacier allowed Mattas and her team to create a chronological, geomorphologic map of the periglacial and glacial landform activity in the Dingboche, Nepal, region.

The high-resolution drone Mattas and her team used was critical for their mapping and photogrammetry efforts. The image of the moraines at the Khumbu Glacier were the drones captured (right) were much more detailed than the most recent Google satellite image of the same area (left). (Laura Mattas/University of Maine)
A preliminary version of Mattas’ chronological, geomorphological figure, mapping the timing and extent of the Last Glacial Maximum for the Khumbu Glacier. From the inward to outward moraines, or most to least glacial movement, moraines formed around 18, 29, 36, 37, and 67,000 years ago. (Laura Mattas/University of Maine)

The preliminary 15 ages of moraines documented thus far suggests the timing of the Last Glacial Maximum for the Khumbu Glacier is consistent with similar research of glaciers around the world. Maps like the one Mattas has created are not only helpful for scientists to understand the rate and extent of glacial activity due to climate variability, but also serve as an important visual tool for the public and policymakers to recognize one impact of changing environmental conditions.

“[Maps] can tell us whether we need to prepare for giant floods and make flood walls or if this is a slow-moving process where we just raise the river banks,” Mattas said, The faster we can answer these questions, the better we can protect the communities who would be directly hit, she added.

Shivani Majmudar covers health, environment and science at Medill. You can follow her on Twitter at @spmajmudarr.

Medill School Of Journalism, Media, Integrated Marketing Communications
1845 Sheridan Road, Evanston, IL 60208-2101 © 2020 Northwestern University